skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murphy, Madalyn C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Amziane, S; Merta, I; Page, J. (Ed.)
    Portland cement is one of the most used materials on earth. Its annual production is responsible for approximately 7% of global carbon dioxide (CO2) emissions. These emissions are primarily associated with (1) the burning of fossil fuels to heat cement kilns and (2) the release of CO2 during limestone calcination. One proposed strategy for CO2 reduction includes the use of functional limestone fillers, which reduce the amount of portland cement in concrete without compromising strength. This study investigated the effect of using renewable, CO2-storing, biogenic CaCO3 produced by E. huxleyi as limestone filler in portland limestone cements (PLCs). Biogenic CaCO3 was used to synthesize PLCs with 0, 5, 15, and 35% limestone replacement of portland cement. The results substantiate that the particle sizes of the biogenic CaCO3 were significantly smaller and the surface areas significantly larger than that of reagent grade CaCO3. X-ray diffraction indicated no differences in mineralogy between reagent-grade and biogenic CaCO3. The use of biogenic CaCO3 as a limestone filler led to (i) increased water demand at the higher replacements, which was countered by using a superplasticizer, and (ii) enhanced nucleation during cement hydration, as measured by isothermal conduction calorimetry. The 7-day compressive strengths of the PLC pastes were measured using mechanical testing. Enhanced nucleation effects were observed for PLC samples containing biogenic CaCO3. 7-day compressive strength of the PLCs produced using biogenic CaCO3 were also enhanced compared to PLCs produced using reagent-grade CaCO3 due to the nucleation effect. This study illustrates an opportunity for using CO2-storing, biogenic CaCO3 to enhance mechanical properties and CO2 storage in PLCs containing biologically architected CaCO3. 
    more » « less
  2. Abstract Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold,α= 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine thatα= 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating. 
    more » « less